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Abstract

In this paper, natural convective heat transfer in a horizontal eccentric annulus between a square outer cylinder and
a heated circular inner cylinder is numerically studied using the differential quadrature (DQ) method. The vorticity—
stream function formulation is taken in the governing equation. To take the global circulation flow into consideration,
the pressure single-value condition is applied, an explicit formulation is derived and the stream function value on the
inner cylinder wall is updated from the values at all the interior points. To apply the DQ method, the coordinate
transformation is performed. A super elliptic function is introduced in this paper for approximating the square outer
boundary located eccentrically to the inner boundary. As a result, the coordinate transformation from the physical
domain to the computational domain is set up by an analytical expression. It is demonstrated in this paper that the DQ
method is an efficient approach in computing the weak global circulation in the domain. The present method is vali-
dated by comparing its numerical results with available data in the literature and very good agreement has been
achieved. A systematic study is conducted for the analysis of flow and thermal fields at different eccentricities and

angular positions. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The flow and thermal fields in enclosed space are of
great importance due to their wide applications such as
in solar collector-receivers, insulation and flooding
protection for buried pipes used for district heating and
cooling, cooling systems in nuclear reactors, etc. A large
number of literature were published in the past few
decades. For concentric and eccentric cases in a hori-
zontal annulus between two circular cylinders, the basic
and fundamental configuration, the flow and thermal
fields have been well studied. Kuehn and Goldstein [1]
comprehensively studied the concentric case. The
experimental and numerical studies of the eccentric case
have been conducted by Kuehn and Goldstein [2], and
Guj and Stella [3].
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Comparatively, little work has been conducted in
more complex domains, such as the annulus between a
square outer cylinder and a circular inner cylinder, es-
pecially for the eccentric case considered in this paper.
For concentric cases, Warrington and Powe [4] reported
some experimental results of natural convective heat
transfer between concentrically mounted bodies at low
Rayleigh numbers. Liu et al. [5] studied the heat con-
vection problem for concentric cases using an operator-
splitting pseudo-time-stepping finite element method.
Moukalled and Acharya [6] studied numerically natural
convective heat transfer from a heated horizontal cylin-
der placed concentrically inside a square enclosure. The
governing equations are solved in a body-fitted coordi-
nate system using a control volume-based numerical
procedure. For eccentric cases, Ekundayo et al. [7]
studied experimentally the natural convection in hori-
zontal annulus between a square outer cylinder and a
circular inner cylinder. Ghaddar [8], and Deschamps and
Desrayaud [9] numerically studied the natural convective
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Nomenclature

a, b half length of the axis in the x and y
directions for the super elliptic function

a;, b;  DQ weighting coefficients of the

first- and second-order derivatives

specific heat at constant pressure

gravitational acceleration

local heat transfer coefficient

average heat transfer coefficient

thermal conductivity

side length of the square outer cylinder

power of the super elliptic function

average Nusselt number

Pr Prandtl number

7i radius of the inner cylinder

7o distance from the outer square
cylinder to the origin

Ra Rayleigh number

r ratio of L over 2r;

X,y coordinates

o

2T mEmEe o
<

T non-dimensional temperature

u, v velocity components along x and y
directions, respectively

U,V  transformed velocity components
along ¢&, n directions

Greek symbols

p thermal expansion coefficient

En transformed coordinates

Vi stream function

W max maximum stream function

Vall stream function on the inner cylinder wall
w vorticity

U viscosity

v kinematic viscosity

€ eccentricity

0, angular position of outer cylinder
Subscripts

i values on the inner cylinder wall
o values on the outer cylinder wall

heat transfer from a uniformly heated horizontal cylinder
placed in a large air-filled rectangular enclosure.
Sasaguchi et al. [10] numerically studied the effort of the
position of a cooled cylinder in a rectangular cavity on
the cooling process of water around the cylinder.

In the previous studies for numerical simulation of
natural convection in enclosures, low-order methods
such as finite difference, finite volume and finite element
methods were usually used. In general, the low-order
methods need to use a large number of grid points to
obtain accurate numerical results, and as a consequence,
require large computational effort and virtual storage.
On the other hand, the global circulation flow in an
eccentric annulus does exist but is very weak, and a high-
order method is required in order to obtain an accurate
solution. In the present study, the natural convective
heat transfer in a horizontal eccentric annulus between a
square outer cylinder and a heated circular inner cylin-
der is numerically studied using the differential quadra-
ture (DQ) method. The vorticity—stream function
formulation in the curvilinear co-ordinate system is
taken as the governing equation, and the pressure single-
value condition is converted to an explicit formulation
to update the stream function value on the inner cylinder
wall. The SOR iteration method is applied to solve the
resultant algebraic equations. The effects of eccentricity
and angular position on the flow and thermal fields for
the medium aspect ratio are studied in detail.

The DQ method is a global method for numerical
discretization. The feature of the DQ method is that it
can obtain very accurate numerical results by using a

considerably small number of grid points and requires
very little computational effort. Like the conventional
low-order finite difference schemes, the DQ method also
requires the computational domain to be regular. For
irregular domain problems such as the one considered in
this study, the coordinate transformation technique
should be introduced. In this technique, the irregular
physical domain is first transformed into a regular
computational domain, and the governing equations as
well as the boundary conditions are transformed into the
relevant forms in the computational space. Then all the
computations including the discretization of derivatives
by the DQ method are based on the computational
space. In this paper, we will demonstrate that the ap-
plication of the DQ method to irregular domain prob-
lems is also very efficient.

For the coordinate transformation, a super elliptic
function is introduced in this paper for the square outer
boundary located eccentrically to the circular inner
cylinder. With the super elliptic function, the coordinate
transformation from the physical space to the compu-
tational space can be set up by an analytical expression.
Thus, all the geometrical parameters can be computed
exactly. This simplifies the process of the coordinate
transformation.

2. DQ method

The DQ method is a global numerical approach
proposed by Bellman et al. [11,12], and greatly im-
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proved by Shu and Richards [13,14], and Shu and Chew
[15] in the development of explicit formulations for
computing the weighting coefficients. For brevity, a one-
dimensional problem is chosen in the following to
demonstrate the DQ method, where the first- and sec-
ond-order derivatives of f(x) at a point x; are approxi-
mated by

f:\'(xi):iaiff(xi)’ fori:1,2,...,N, (1)
j=1

falx) = byf(x), fori=1,2,---,N, (2)
J=1

where N is the number of grid points, and a;; and b;; are
the first- and second-order weighting coefficients, re-
spectively. Obviously, the key procedure in the DQ
method is to determine the weighting coefficients a;; and
b;;. It was shown by Shu and Richards [13,14], and Shu
and Chew [15] that all the ways of computing the
weighting coefficients can be generalized under the an-
alyses of function approximation and linear vector
space. It was found that when the function f(x) is ap-
proximated differently, the formulations for a; and b;
are also different. In the following, the respective for-
mulations of a;; and b;; are presented when the function
f(x) is approximated by a high-order polynomial or by
the Fourier series expansion.

2.1. Polynomial-based differential quadrature (PDQ)

In this case, it is supposed that the function is ap-
proximated by a (N — 1)th degree polynomial in the
form

1) =3 e (3)
k=0

Under the analysis of a linear vector space, Shu and
Richards [13,14], and Shu [16] derived the following
explicit formulations for computing the weighting coef-
ficients:

MO (x;)

N b WV hen j i 4
“ (i —x)M M (x;) et J # (42)
N
Aij = — Z i, (4b)
k=T ket
by = 2a; (al-l- b x->’ when j # i, (5a)
i J
N
bi=— Y b, (5b)
k=1 A

where

N

(o — x1)-
k=1t

MY (x;) =

It is indicated that a recurrence relationship has also
been derived to compute the weighting coefficients of the
higher-order derivatives. For details, see the work of
Shu and Richards [13,14].

2.2. Fourier expansion-based differential quadrature

(FDQ)

In this case, the function is approximated by a
Fourier series expansion in the form
N/2
f(x) =co+ Y (cx coshx + dy sinkx). (6)
=
Similar to PDQ, Shu and Chew [15], and Shu and Xue
[17] also derived the explicit formulations to compute the

weighting coefficients a;; and b;;, which are listed below:

1 P(X[) . .
= = h 7
%= 3 a0 —x) 2Py e A (7a)
N
ajj = — it (7b)
k=T ki
b,’j = ajj [2a,~l~ — COtXi — x’l, when j 7é 1 (8&)
N
bi=— Y b, (8b)
k=1k#i
where
i Xi—X
P(x;) = H sin=— %
k=0k#i 2

It should be indicated that Egs. (7a), (7b), (8a) and (8b)
can be applied to the periodic problems and the non-
periodic problems. For the non-periodic problems, the x
range in the computational domain is 0 <x < m, while
for the periodic problems, the x range in the computa-
tional domain is 0 <x < 2rn. For details, refer to the
work of Shu and Chew [15].

In the present study, the PDQ and FDQ methods will
be used to discretize the spatial derivatives in the gov-
erning equations and the boundary conditions. The de-
rivatives in the radial direction are discretized by the
PDQ method while the derivatives in the circumferential
direction are discretized by the FDQ method.

3. Governing equations and boundary conditions

A schematic view of a horizontal eccentric annulus
between a square outer cylinder and a heated circular
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inner cylinder is shown in Fig. 1. Heat is generated
uniformly within the circular inner cylinder, which is
placed eccentrically within the cold square cylinder. The
imposed boundary conditions are no-slip and isothermal
walls on both cylinders.

Based on the Boussinesq approximation, the non-
dimensional governing equation for the problem
is written in the vorticity—stream function formulation
as

Ry Py

a2 =@ ©)
to o _p(To Ty ppl (10)

“ax TP oy ox2 Oy “ox

oT  oT T T 1
u6x+ dqy ax2+ay2’ (11)
where {y denotes stream function, o represents vortic-
ity, and 7 is the temperature. Prandtl number is de-
fined as Pr = uC,/k, and Rayleigh number is defined
as Ra = (C, pyg BL* AT)/kv. Here p is the viscosity, C,
the specific heat at constant pressure, k£ the thermal
conductivity, p, the reference density, g the gravita-
tional acceleration, f the thermal expansion coefficient,
L the side length of the square outer cylinder, AT the
temperature difference between inner and outer cylin-
ders, and v is the kinematic viscosity. Velocity com-
ponents u and v can be computed from the stream
function y as

v=——. (12)

Fig. 1. Sketch of physical domain.

Using the expressions in Eq. (12), Eq. (9) can also be
written as

Ou Ov
-, 1
dy Ox (13)

Like the low-order finite difference schemes, the DQ
method requires the physical boundary to be a mesh
line. In the present study, however, the physical
boundaries may not coincide with the mesh lines. When
the DQ method is applied to this case, the physical
boundary conditions cannot be implemented in a
straightforward way. To overcome this difficulty, the
following transformation from the physical space to the
computational space is required:

é = é(x7y)
{n=n(x,y)- (14)

With this transformation, the governing equations (9)—
(11) can be transformed to the following forms in the
computational space:

oy %y oy oy oy
A—+2B C* G H—=J 15
65 + noE + o + + a¢ w, ( )
o¢
62 *w o*w 0w ow
=Prl A4 2B C—+G—+H
(a?* sz Car Ot 66)
oT oT
—”Ra(yna—é—yfa) (16)
oT orT 2T 0T 2T orT oT
U—+V—=|4A—+2B—+C G—+H
e oy (652+ e Coap oo T 65)
(17)
where
oy oy
= — V=—-—— A= B=—
a;/]? 657 a/J7 G/J7
0B oC 04 0D
C=y/J, G=—y & =L, %
A=x 4y, O=XXy+ Yy, V=X 4%,
J = xey, — Yexy, (18)

where x¢, x,, y: and y, are respectively the abbreviations
of dx/0&, 0x/dn, Oy/0f and dy/0n.

From the no-slip condition, the velocities U and 7 on
both the inner and outer cylinder walls are zero. For an
eccentric annulus, the stream function values on the
inner and outer cylinders are different and a global cir-
culation flow along the inner cylinder exists. The stream
function value on the outer cylinder wall is set to zero in
the present study. The boundary conditions can be
written as
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U‘r/:O,l = 07 V‘n:()’l =0 (183.)
¥|,-o = constant, | _, =0 (18b)
Typ=1 T}, =0 (18¢)

The boundary condition for vorticity o can be derived

from Eq. (15)
C %y

w =——
n=0,1 J 6’72

CoU

n=0,1 — 7 6_11

(19)

n=0,1

Furthermore, Neumann boundary condition for the
stream function can be derived from Eq. (18a) as

5
G_‘Z i =0, (20)

The periodic condition in the & direction is automatically
implemented by FDQ method.

4. Super elliptic function and analytical coordinate
transformation

As shown in Fig. 1, the physical domain is formed by
a square outer cylinder and a circular inner cylinder. The
DQ method cannot be directly applied to solve this
problem in both the Cartesian coordinate system and
the cylindrical coordinate system. To apply the DQ
method, we have to perform the coordinate transfor-
mation, which maps the physical domain to a rec-
tangular domain in the computational space. Usually,
the coordinate transformation is made by numerical grid
generation technique. In this technique, the geometrical
parameters such as x;, x,, y: and y, are approximated
by a numerical discretization technique. Obviously, this
treatment will introduce additional numerical errors into
the computation, which may have some effects on the
accuracy of numerical results. As will be shown below, a
super elliptic function can be used to accurately ap-
proximate a rectangular boundary. So, for the problem
considered in this study, an analytical expression can be
derived for the coordinate transformation from the
physical space to the computational space. Then all the
geometrical parameters can be computed exactly. The
super elliptic function can be written as

() (52 - o

where 7 is a positive integer, a and b half of the elliptic
lengths in the x and y directions, respectively, and xo and
1o are the coordinates at the center of square outer cyl-
inder. When xo = 0 and y; = 0, the problem is a con-
centric case. When xy # 0 and ), # 0, the considered
problem is an eccentric case. It is interesting to see that
when n=1 and a # b, the geometry represented by

N
- J
n=1 n=3 n=6
n=10 n=30 n=50

Fig. 2. Effect of power n on geometry.

Eq. (21) is an ellipse; and when n =1 and a = b, the
geometry becomes a circle. As n increases from 1, the
geometry would approach a rectangle for a # b or a
square for @ =b. The geometries varying with n for
a = b are shown in Fig. 2. It can be concluded that when
n is above 20, the geometry keeps very little change with
the increase of # and remains in a square with tiny round
corner. Therefore the non-dimensional square outer
cylinder in an eccentric position can be approximated by

(x—x0)" + (=) =1 (22)

with the use of a large value of n.
With Eq. (22), the coordinate transformation for the
present problem can be exactly set up, which is written as

x= —siné[r + (ro — ri)yl, (23a)
y = cos&lr + (ro — ri)l, (23b)
where #; is the radius of the inner cylinder, which is a
constant, and r, is derived from Eq. (22) as

b

b 2n X 2n 2n
[(—) (siné+—0) +(cos£—)ﬁ) ]
a 140) 140)
(24)

where r, can be computed by iteration. The transformed
computational domain in the (&, ) plane is 0<n <1
and 0<¢<<2n. With Egs. (23a), (23b) and (24), the
parameters 4, B, C, G, H, «, o, y, J used in Egs.
(15)—(17) can be computed accurately.

To = 1/2n°

5. Pressure single-value condition and computation of
stream function value on inner cylinder wall

As mentioned in the previous section, the global cir-
culation flow does exist but is very weak in the flow field.
The pressure single-value condition is required to update
the stream function value on the inner cylinder wall.

According to the pressure single-value condition, we
have §, Vpdl =0, where / can be taken as the inner
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cylinder boundary along anti-clockwise direction. Along
the inner cylinder boundary in the computational do-
main, we have

2nap
—dé=0. 25
| (25)

The expression of 0p/0¢ on the inner cylinder wall can
be derived from the momentum equation, which is
written as

| ___on Oy 1
o (ro—m) O (ro—r)* O
— riPrRaT sin &. (26)

The derivatives in Eq. (26) can be discretized by the
PDQ method. With Egs. (18b), (20) and (26), Eq. (25)
can be simplified to give

o = °T(SUM3 + SUM2)dé o)
wall — qll +p1i )
where
M-2
”
SUM3 = ——— Vi
(ro — ”i)3 ; '
1 M-2
SUM2 = ———— 3 puj,
ro— 1) i3
2T ¥
N
o (ro—n)
_ 2n 1
I= — e (28)
2 )
0 (ro )

P = b1y + biy-1G, — biapy,

gk = C1k + CLyu-19; — C12D;»

ST

= (dl,kﬁM,M—l — aM.kal,M—l)/A7
q; = <511,k5M.2 - ﬁM7k51.2> /A,
A = a8y -1 — G281 p-1-

aix, by and ¢, are respectively the weighting coef-
ficients of the first-, second- and third-order derivatives
in the # direction. Note that p;, ¢, I and I can be
computed once and stored for all the following com-
putations. Eq. (27) indicates that the stream function on
the inner cylinder wall can be updated by the stream
function values at the interior points, which are com-
puted from the governing equations.

6. Results and discussion

In the present study, Rayleigh number is fixed at
3 x 10% in a steady laminar boundary-layer regime, and
Prandtl number is set to be 0.71. The numerical inves-

tigation is conducted for different eccentricities and
angular positions of the outer cylinder. The power n
used in the super elliptic function is taken to be 50 for a
good approximation of the square boundary. The PDQ
method is applied in the # direction with non-uniform
grid point distribution, while the FDQ method is applied
in the ¢ direction with uniform grid point distribution.
The grid point distributions are taken as

i1 1 j—1
&= v 2m, 11/—5{1 COS(M—ITC)}’

i= 1,2, N = 1,2, M. (29)

After numerical discretization by the DQ method, the
resultant algebraic equations are solved by the SOR it-
eration method. In the present study, the initial values
are set to zero for , u, v, T and w at the interior points.
The Nusselt numbers are defined in the same way as
shown in the work of Moukalled and Acharya [6].

6.1. Definition of Nusselt numbers

The local heat transfer coefficient / is expressed as

or
h=—k— 30
= (30)
where k is the thermal conductivity. The average heat
transfer coefficient 4 can be computed as

_ 1 2n
hzﬁ/o hdé. (31)

The average Nusselt numbers for the inner and the outer
boundaries are respectively determined by
— WS —  heS,

Nui:Ta o ==

(32)

where S; and S, are defined in the same way as in the
work of Moukalled and Acharya [6]. In their work, the
computational domain is taken as half of the physical
domain due to the symmetry, so S; and S, are taken as
half of the circumferential lengths of the inner and outer
cylinder surfaces, respectively. Since at steady state, the
Nusselt numbers along the inner and outer walls are the
same, there is no need to pay separate attention to Nu;
and Nu,. Thus in this study, we only show the value of
Nu;, which is also noted as Nu.

6.2. Grid-independent study

The grid independence of numerical results is studied
for the case of Ra=3x10°, r=L/(2r) =26,
Pr=0.71, ¢ =0.50 and ¢, = 0°. The numerical results
using five different mesh sizes are shown in Table 1. It
can be seen from the table that when the mesh size is
above 31 x 21, the computed ¥,,,, and Nu remain the
same. Thus, we can say that the mesh size of 31 x 21 is
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Table 1
Grid independence study for Ra =3 x 10°, Pr=0.71, rr =
2.6, ¢, =0°and ¢ =0.50

Item Grid point Nu Winax
1 25 x 15 7.10 21.72
2 31 x 17 6.99 21.43
3 31 x 19 6.98 21.40
4 31 x21 6.98 21.43
5 31 x 23 6.98 21.43

fine enough to give accurate numerical results for the
case of Ra = 3 x 10°. It is also shown in Table 1 that the
DQ method only requires very few grid points to obtain
accurate numerical results.

The minimum mesh size for a grid-independent so-
lution depends on the complexity of the flow and ther-
mal fields, eccentricity and the angular position. When
Rayleigh number is fixed at 3 x 103, the minimum mesh
size mainly depends on the eccentricity and the angular
position. From our numerical experiments, it was found
that for small eccentricity ¢ = 0.25 and ¢ = 0.50 at all
angular positions, 31 x 21 and 41 x 21 grid points are
adequate to yield accurate results. When the eccentricity
increases and the angular position changes, more grid
points should be used to obtain accurate results. In this
study, the mesh sizes of 31 x 21, 41 x 21, 49 x 39 and
59 x 49 are used, respectively, for different combinations
of eccentricities and angular positions.

6.3. Effect of power n on numerical results

The effect of power n of the super elliptic function on
the approximation of the geometry has been studied in
the previous section, and some results are displayed in
Fig. 2. In this section, we will study the effect of power n
on the numerical results. Table 2 lists the change of
Nu and v, with power n for the case of Ra =3 x 10°,
Pr=0.71, rr =2.6, ¢, =0° and ¢ = 0.50. It is clearly
shown in the table that Nu and v, remain the same
when the power n exceeds 10 and 20, respectively. For
accurate numerical results and good geometry approxi-

Table 2
Effect of power n on numerical results for Ra =3 x 10°, Pr =
0.71, rr=2.6, ¢, =0°and ¢ = 0.50

Item n Nu Vinax

1 1 6.75 17.21
2 3 6.95 21.44
3 6 6.97 21.57
4 10 6.98 21.48
5 20 6.98 21.43
6 30 6.98 21.43
7 40 6.98 21.43
8 50 6.98 21.43

mation, the power n is taken to be 50 in the following
study.

6.4. Validation of numerical results

As discussed in the introduction, most research work
focused on the study of natural convection in annuli
between either concentric or eccentric circular cylinders.
Only a few publications were involved in an annulus
between a square outer cylinder and a circular inner
cylinder. In the work of Moukalled and Acharya [6],
three different aspect ratios and four different Rayleigh
numbers were considered. The governing equations were
solved in a body-fitted coordinate system using a control
volume-based numerical procedure. Their numerical
data were validated by comparison with some exper-
imental data and found in good agreement. In the work
of Liu et al. [5], the circular inner cylinder was concen-
trically located inside a rectangular cylinder and only
one aspect ratio was considered at two different Ray-
leigh numbers. The problem was solved by an operator-
splitting pseudo-time-stepping finite element method.
Thus, in this study, the results of Moukalled and Ach-
arya [6] are used to validate the present numerical re-
sults. The maximum stream function value ¥, and the
average Nusselt number Nu between the present work
and the work of Moukalled and Acharya [6] are com-
pared in Table 3 for Rayleigh numbers of 10%, 10°, 10°
and aspect ratios of 5.0, 2.5 and 1.67. It should be noted
that due to the different ways of non-dimensionalization
between the work of Moukalled and Acharya [6] and the
present study, the equivalent ¥, in Table 3 is the one
given from Moukalled and Acharya [6] multiplying by
the Prandtl number. From Table 3, it can be seen that
the present results generally agree well with those of
Moukalled and Acharya [6].

6.5. Global circulation

The angular directions of 0° and 180° are two special
cases in the eccentric annulus. It can be seen from Figs. 3
and 4 that the flow and thermal fields are symmetric
about the vertical line connecting the centers of both
cylinders. The inner cylinder is always surrounded by a
thermal boundary layer while the presence of a bound-
ary layer on the outer cylinder depends on the inner
cylinder position. When the inner cylinder is near the
bottom of the cavity, the stagnant area reduces to its
minimum. When the inner cylinder is moved near the
top, there is no boundary layer on the bottom portion of
the outer cylinder. Two eddies are found to be sym-
metric in the physical domain. The flow and thermal
fields are symmetrical. The global circulation does not
exist at different eccentricities in these two cases.

For other angular positions, global circulation flow
occurs for all eccentricities. This can be observed in
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Table 3

Comparison of . and Nu (Pr = 0.71)
o L Ra Wi Nu

2r; Present Moukalled et al. [6] Present Moukalled et al. [6]
(equivalent)

5.0 104 1.71 1.73 2.082 2.071
2.5 0.97 1.02 3.245 3.331
1.67 0.49 0.50 5.395 5.826
5.0 10° 9.93 10.15 3.786 3.825
2.5 8.10 8.38 4.861 5.080
1.67 5.10 5.10 6.214 6.212
5.0 10° 20.98 25.35 6.106 6.107
2.5 24.13 24.07 8.898 9.374
1.67 20.46 21.30 12.000 11.620

Table 4, which shows the stream function value on the
inner cylinder wall, ¥,;. It is noted that when the
global circulation flow is occurred, W, is not zero.
The formation of global circulation flow is probably
due to unbalance of the buoyant forces in the left and
right sides of the vertical centerline.

6.6. Analysis of flow and thermal fields

Analysis of flow and thermal fields is made at dif-
ferent angular position ¢,. The computational results of

Table 4
Results in the arbitrary eccentric annuli for Ra = 3x 10°, Pr =
0.71, rr =2.6

Do € Vinax Yt Nu
0.00 15.63 <1074 6.52
0° 0.25 18.67 <10 6.75
0.50 21.43 <104 6.98
0.75 24.07 <10~ 7.95
0.95 24.57 <1074 11.71
45° 0.25 18.84 0.11 6.90
0.50 19.75 0.47 6.92
0.75 20.65 1.46 7.06
0.95 21.68 1.80 7.61
90° 0.25 17.15 —0.15 6.73
0.50 18.77 1.64 6.72
0.75 16.83 1.05 7.40
0.95 16.51 0.03 11.15
135° 0.25 15.56 0.12 6.48
0.50 14.60 0.84 6.25
0.75 13.94 1.25 6.23
0.95 12.96 0.93 6.45
180° 0.25 12.55 <10 7.05
0.50 11.32 <10 6.17
0.75 10.26 <10~ 6.90
0.95 9.19 <1074 10.58

Wonaxs Wwan @nd Nu are listed in Table 4. The streamlines
and isotherms are shown in Figs. 3-7 for different an-
gular positions.

For ¢, = 0° as shown in Fig. 3, the flow and thermal
fields are symmetric. The flow fields show explicitly that
the two centers of the two symmetric eddies on the left-
hand side (LHS) and right-hand side (RHS) move closer
with eccentricity. This is because the great space is then
available for circulation to occur when the eccentricity
increases, and the two eddies increase their sizes towards
the center of the square outer cylinder. The maximum
value of the stream function increases from 15.63 for the
concentric case to 24.57 for ¢ =0.95 (Table 4). The
stagnant area under the inner cylinder decreases with
increase of eccentricity but still exists at the two bottom
corners of the square cylinder. A large plume exists in
the large gap above the inner cylinder, which creates a
thinner thermal boundary layer on top of the square
cylinder.

For ¢, =180° as shown in Fig. 4, the flow and
thermal fields are symmetric. The maximum value of
stream function decreases with eccentricity considerably,
from 15.63 for the concentric case to 9.19 for ¢ = 0.95
(Table 4). For ¢ = 0.25, two additional eddies are found
above the inner cylinder. Two plumes appear on top of
the inner cylinder with about 40° from the vertical cen-
terline, and a third plume appears above top of the inner
cylinder with reverse direction. The two additional ed-
dies on top of the inner cylinder cause the formation of
the third plume to appear in the reverse direction. For
the case of ¢ = 0.75, the two additional eddies disappear
and the two plumes become weak. The third plume that
occurs in the reverse direction disappears. This is
probably due to the fact that the increased eccentricity
reduces the space above the top of the inner cylinder and
some heat conduction occurs on top of the inner cylin-
der. The average Nusselt number increases slightly from
6.52 for the concentric case to 7.05 for the case of
¢ = (.25, then decreases slightly to the minimum 6.17 at
¢ = 0.50. It increases again to reach 6.90 for the case of
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Fig. 5. Streamlines and isotherms for Ra = 3 x 10°, Pr = 0.71, rr = 2.6, @, = 45°.

¢ = 0.75, and then increases substantially for the case of For ¢, =45° as shown in Fig. 5, the eddy on the
e = 0.95. A large portion of stagnant area increases with LHS in the flow expands in size due to the increasing
the eccentricity. space, with the center of the eddy moving downwards.
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Fig. 7. Streamlines and isotherms for Ra = 3 x 10°, Pr = 0.71, rr = 2.6, ¢, = 135°
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The eddy on the RHS remains the similar size but shifts
above the inner cylinder. The increasing eccentricity al-
lows larger space for the eddy on the RHS, but the in-
creasing eddy on the LHS limits the space for the eddy
on the RHS. The maximum value of stream function
increases from 15.63 for the concentric case to 21.68 for
the case of ¢ =0.95. The plume above the top of the
inner cylinder shifts from the vertical line to the left. The
average Nusselt number remains almost unchanged ex-
cept for the case of ¢ = 0.95. The stagnant area decreases
with eccentricity.

For ¢, =90° as shown in Fig. 6, the eddy on the
LHS in the flow expands in size due to the increasing
space. The eddy on the RHS separates into two small
eddies, above and below the inner cylinder respectively,
with the increasing eccentricity. The maximum values of
stream function are about the same level at different
eccentricity, but the average Nusselt number increases
greatly for the case of ¢ = 0.95, where the inner cylinder
is very close to the wall of the outer cylinder.

For ¢, = 135° as shown in Fig. 7, the eddy on the
RHS finally separates into two with eccentricity due to
the reduced space. The maximum value of stream
function decreases slightly from 15.63 for the concentric
case to 12.96 for the case of &= 0.95. The average
Nusselt number decreases slightly from 6.52 for the
concentric case to the minimum value 6.23 for the case
of ¢=0.75, and then increases slightly to 6.45 for
¢ = 0.95. The plume above the top of the inner cylinder
increases from one to two due to the decreased space
with eccentricity. The stagnant area under the inner
cylinder increases with eccentricity.

7. Conclusions

In this paper, the DQ method is employed to dis-
cretize the derivatives in the governing equations and
boundary conditions to study the natural convection in
a horizontal eccentric annulus between a square outer
cylinder and a circular inner cylinder. The coordination
transformation method is applied. The vorticity—stream
function formulation is taken as the governing equation.
The explicit formulation of the stream function value on
the inner cylinder wall is derived from the pressure
single-value condition. The DQ method is an efficient
approach in computing the weak global circulation flow.

The natural convection between arbitrary eccentric
cylinders for Ra = 3 x 10° and aspect ratio of 7» = 2.6 is
systematically analyzed, including the effects of outer
cylinder position on average Nusselt number, flow and
thermal fields. It was found that the global circulation,
flow separation and the top space between the square
outer cylinder and the circular inner cylinder have sig-
nificant effects on the plume inclination.
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